Logo
Unionpedia
Kommunikation
Jetzt bei Google Play
Neu! Laden Sie Unionpedia auf Ihrem Android™-Gerät herunter!
Installieren
Schneller Zugriff als Browser!
 

3-Sphäre

Index 3-Sphäre

Die 3-dimensionale Sphäre oder kurz 3-Sphäre S^3 ist ein wichtiges Objekt in Mathematik und Physik.

43 Beziehungen: Abelsche Gruppe, Abstand, Alexandroff-Kompaktifizierung, Diffeomorphismus, Differenzierbare Mannigfaltigkeit, Einheitskugel, Endliche Gruppe, Euklidische Norm, Euklidischer Raum, Fundamentalgruppe, Geometrisierung von 3-Mannigfaltigkeiten, Grigori Jakowlewitsch Perelman, Heegaard-Zerlegung, Homöomorphismus, Homogener Raum, Homologiesphäre, Hyperebene, Isometrie (Riemannsche Geometrie), Kompakter Raum, Komplexe Zahl, Koordinatensystem, Lie-Gruppe, Lineare Unabhängigkeit, Linsenraum, Mannigfaltigkeit, Matrix (Mathematik), Matrizenring, Menge (Mathematik), Orientierung (Mathematik), Punkt (Geometrie), Quotiententopologie, Rand (Topologie), Schnittkrümmung, Singuläre Homologie, Sphäre (Mathematik), Standardmodell, Symmetrischer Raum, Tangentialbündel, Unitäre Matrix, Vektorfeld, Verschlingung, William Thurston, Zusammenhängender Raum.

Abelsche Gruppe

Eine abelsche Gruppe ist eine Gruppe, für die zusätzlich das Kommutativgesetz gilt.

Neu!!: 3-Sphäre und Abelsche Gruppe · Mehr sehen »

Abstand

Der Abstand (die Entfernung, die Distanz) zweier Punkte ist im mathematischen und physikalischen Sinne die Länge der kürzesten Verbindungslinie (im euklidischen Raum der geradlinigen Strecke) zwischen den beiden Punkten.

Neu!!: 3-Sphäre und Abstand · Mehr sehen »

Alexandroff-Kompaktifizierung

Im mathematischen Teilgebiet der Topologie bezeichnet die Alexandroff-Kompaktifizierung (auch Einpunkt-Kompaktifizierung) eine Einbettung eines nicht kompakten topologischen Raumes in einen kompakten topologischen Raum durch Hinzunahme eines einzelnen Punktes.

Neu!!: 3-Sphäre und Alexandroff-Kompaktifizierung · Mehr sehen »

Diffeomorphismus

In der Mathematik, insbesondere in den Gebieten Analysis, Differentialgeometrie und Differentialtopologie, ist ein Diffeomorphismus eine bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist.

Neu!!: 3-Sphäre und Diffeomorphismus · Mehr sehen »

Differenzierbare Mannigfaltigkeit

In der Mathematik sind differenzierbare Mannigfaltigkeiten ein Oberbegriff für Kurven, Flächen und andere geometrische Objekte, die – aus der Sicht der Analysis – lokal aussehen wie ein euklidischer Raum.

Neu!!: 3-Sphäre und Differenzierbare Mannigfaltigkeit · Mehr sehen »

Einheitskugel

Einheitskugel (rot) und -sphäre (blau) für die euklidische Norm in zwei Dimensionen Unter der Einheitskugel versteht man in der Mathematik die Kugel mit Radius eins um den Nullpunkt eines Vektorraums.

Neu!!: 3-Sphäre und Einheitskugel · Mehr sehen »

Endliche Gruppe

Endliche Gruppen treten im mathematischen Teilgebiet der Gruppentheorie auf.

Neu!!: 3-Sphäre und Endliche Gruppe · Mehr sehen »

Euklidische Norm

Euklidische Norm in zwei reellen Dimensionen Die euklidische Norm, Standardnorm oder 2-Norm ist eine in der Mathematik häufig verwendete Vektornorm.

Neu!!: 3-Sphäre und Euklidische Norm · Mehr sehen »

Euklidischer Raum

In der Mathematik ist der euklidische Raum zunächst der „Raum unserer Anschauung“, wie er in Euklids Elementen durch Axiome und Postulate beschrieben wird (vgl. euklidische Geometrie).

Neu!!: 3-Sphäre und Euklidischer Raum · Mehr sehen »

Fundamentalgruppe

Die Fundamentalgruppe dient in der algebraischen Topologie zur Untersuchung geometrischer Objekte beziehungsweise topologischer Räume.

Neu!!: 3-Sphäre und Fundamentalgruppe · Mehr sehen »

Geometrisierung von 3-Mannigfaltigkeiten

Die Idee der Geometrisierung als Begriff der Mathematik wurde 1980 von William Thurston als ein Programm zur Klassifizierung geschlossener dreidimensionaler Mannigfaltigkeiten vorgestellt.

Neu!!: 3-Sphäre und Geometrisierung von 3-Mannigfaltigkeiten · Mehr sehen »

Grigori Jakowlewitsch Perelman

Grigori Perelman (1993) Grigori Jakowlewitsch Perelman (wiss. Transliteration Grigorij Jakovlevič Perel'man; * 13. Juni 1966 in Leningrad, Sowjetunion) ist ein russischer Mathematiker und Experte auf den mathematischen Teilgebieten der Topologie und Differentialgeometrie, insbesondere auf dem Gebiet des Ricci-Flusses.

Neu!!: 3-Sphäre und Grigori Jakowlewitsch Perelman · Mehr sehen »

Heegaard-Zerlegung

In der Mathematik sind Heegaard-Zerlegungen ein wichtiges Hilfsmittel der 3-dimensionalen Topologie.

Neu!!: 3-Sphäre und Heegaard-Zerlegung · Mehr sehen »

Homöomorphismus

Ein Homöomorphismus (zuweilen auch Homeomorphismus in Anlehnung an den englischen Begriff homeomorphism, keinesfalls aber zu verwechseln mit Homomorphismus) ist ein zentraler Begriff im mathematischen Teilgebiet Topologie.

Neu!!: 3-Sphäre und Homöomorphismus · Mehr sehen »

Homogener Raum

Ein homogener Raum (seltener Kleinscher Raum oder Kleinsche Geometrie nach Felix Klein) ist in der Mathematik ein Raum mit einer transitiven Gruppenwirkung.

Neu!!: 3-Sphäre und Homogener Raum · Mehr sehen »

Homologiesphäre

Eine Homologiesphäre bezeichnet in der Mathematik eine n-dimensionale Mannigfaltigkeit M, deren Homologiegruppen isomorph zu denen der gewöhnlichen n-Sphäre sind oder expliziter ausgedrückt eine n-dimensionale Mannigfaltigkeit M, für deren singulären Homologiegruppen und gelten.

Neu!!: 3-Sphäre und Homologiesphäre · Mehr sehen »

Hyperebene

Eine Hyperebene (blau) im Anschauungsraum geht durch Verschiebung einer Ursprungsebene um einen Vektor (rot) hervor. Eine Hyperebene ist in der Mathematik eine Verallgemeinerung des Begriffs der Ebene vom Anschauungsraum auf Räume beliebiger Dimension.

Neu!!: 3-Sphäre und Hyperebene · Mehr sehen »

Isometrie (Riemannsche Geometrie)

In der Differentialgeometrie, einem Teilgebiet der Mathematik, bezeichnet man Abbildungen als lokale Isometrien, wenn sie die Riemannsche Metrik erhalten.

Neu!!: 3-Sphäre und Isometrie (Riemannsche Geometrie) · Mehr sehen »

Kompakter Raum

Kompaktheit ist ein zentraler Begriff der mathematischen Topologie, und zwar eine Eigenschaft, die einem topologischen Raum zukommt oder nicht.

Neu!!: 3-Sphäre und Kompakter Raum · Mehr sehen »

Komplexe Zahl

Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass die Gleichung x^2 + 1.

Neu!!: 3-Sphäre und Komplexe Zahl · Mehr sehen »

Koordinatensystem

Ein Koordinatensystem (mathematisches Kürzel: KOS) dient zur eindeutigen Bezeichnung der Position von Punkten und Objekten in einem geometrischen Raum.

Neu!!: 3-Sphäre und Koordinatensystem · Mehr sehen »

Lie-Gruppe

Eine Lie-Gruppe (auch Liesche Gruppe), benannt nach Sophus Lie, ist eine mathematische Struktur, die zur Beschreibung von kontinuierlichen Symmetrien verwendet wird.

Neu!!: 3-Sphäre und Lie-Gruppe · Mehr sehen »

Lineare Unabhängigkeit

Linear ''unabhängige'' Vektoren in ℝ3 Linear ''abhängige'' Vektoren in einer Ebene in ℝ3 In der linearen Algebra wird eine Familie von Vektoren eines Vektorraums linear unabhängig genannt, wenn sich der Nullvektor nur durch eine Linearkombination der Vektoren erzeugen lässt, in der alle Koeffizienten der Kombination auf den Wert null gesetzt werden.

Neu!!: 3-Sphäre und Lineare Unabhängigkeit · Mehr sehen »

Linsenraum

Linsenräume sind geometrische Gebilde, die in der Mathematik vor allem in der 3-dimensionalen Topologie vorkommen.

Neu!!: 3-Sphäre und Linsenraum · Mehr sehen »

Mannigfaltigkeit

Die Sphäre kann mit mehreren Abbildungen „plattgedrückt“ werden. Entsprechend kann die Erdoberfläche in einem Atlas dargestellt werden. Unter einer Mannigfaltigkeit versteht man in der Mathematik einen topologischen Raum, der lokal dem euklidischen Raum \mathbb^n gleicht.

Neu!!: 3-Sphäre und Mannigfaltigkeit · Mehr sehen »

Matrix (Mathematik)

Schema für eine allgemeine m\times n-Matrix Bezeichnungen In der Mathematik versteht man unter einer Matrix (Plural Matrizen) eine rechteckige Anordnung (Tabelle) von Elementen (meist mathematischer Objekte, etwa Zahlen).

Neu!!: 3-Sphäre und Matrix (Mathematik) · Mehr sehen »

Matrizenring

Der Matrizenring, Matrixring oder Ring der Matrizen ist in der Mathematik der Ring der quadratischen Matrizen fester Größe mit Einträgen aus einem weiteren, zugrunde liegenden Ring.

Neu!!: 3-Sphäre und Matrizenring · Mehr sehen »

Menge (Mathematik)

Eine Menge von Polygonen Eine Menge ist ein Verbund, eine Zusammenfassung von einzelnen Elementen.

Neu!!: 3-Sphäre und Menge (Mathematik) · Mehr sehen »

Orientierung (Mathematik)

Die Orientierung ist ein Begriff aus der linearen Algebra und der Differentialgeometrie.

Neu!!: 3-Sphäre und Orientierung (Mathematik) · Mehr sehen »

Punkt (Geometrie)

Ein Punkt (als Raumpunkt) ist ein grundlegendes Element der Geometrie.

Neu!!: 3-Sphäre und Punkt (Geometrie) · Mehr sehen »

Quotiententopologie

Die Quotiententopologie (auch Identifizierungstopologie genannt) ist ein Begriff aus dem mathematischen Teilgebiet der Topologie.

Neu!!: 3-Sphäre und Quotiententopologie · Mehr sehen »

Rand (Topologie)

Ein Gebiet (hellblau) und sein Rand (dunkelblau). Im mathematischen Teilgebiet der Topologie ist der Begriff Rand eine Abstraktion der anschaulichen Vorstellung einer Begrenzung eines Bereiches.

Neu!!: 3-Sphäre und Rand (Topologie) · Mehr sehen »

Schnittkrümmung

Die Schnittkrümmung ist eine Größe der riemannschen Geometrie, eines Teilgebiets der Mathematik.

Neu!!: 3-Sphäre und Schnittkrümmung · Mehr sehen »

Singuläre Homologie

Die Singuläre Homologie ist eine Methode der algebraischen Topologie, die einem beliebigen topologischen Raum eine Folge abelscher Gruppen zuordnet.

Neu!!: 3-Sphäre und Singuläre Homologie · Mehr sehen »

Sphäre (Mathematik)

2-Sphäre Unter einer Sphäre versteht man in der Mathematik die Oberfläche einer Kugel und die Verallgemeinerung davon auf beliebig hohe Dimensionen.

Neu!!: 3-Sphäre und Sphäre (Mathematik) · Mehr sehen »

Standardmodell

Das Standardmodell der Elementarteilchenphysik (SM) fasst die wesentlichen Erkenntnisse der Teilchenphysik nach heutigem Stand (Beginn des 21. Jahrhunderts) zusammen.

Neu!!: 3-Sphäre und Standardmodell · Mehr sehen »

Symmetrischer Raum

In der Mathematik sind symmetrische Räume eine Klasse von Riemannschen Mannigfaltigkeiten mit einem besonders hohen Grad an Symmetrien.

Neu!!: 3-Sphäre und Symmetrischer Raum · Mehr sehen »

Tangentialbündel

Kreises illustriert. Das erste Bild zeigt die Tangentialräume am Kreis und im zweiten Bild werden diese Räume zu einem Bündel zusammengefasst. Tangentialbündel ist ein Begriff aus der Differentialgeometrie und Differentialtopologie.

Neu!!: 3-Sphäre und Tangentialbündel · Mehr sehen »

Unitäre Matrix

Eine unitäre Matrix ist in der linearen Algebra eine komplexe quadratische Matrix, deren Zeilen- und Spaltenvektoren orthonormal bezüglich des Standardskalarprodukts sind.

Neu!!: 3-Sphäre und Unitäre Matrix · Mehr sehen »

Vektorfeld

Darstellung eines Vektorfeldes anhand ausgewählter Punkte. Die Vektoren sind als Pfeile dargestellt, welche Richtung und Betrag (Pfeillänge) wiedergeben 3-dimensionales Vektorfeld (-y,z,x) In der mehrdimensionalen Analysis und der Differentialgeometrie ist ein Vektorfeld eine Funktion, die jedem Punkt eines Raumes einen Vektor zuordnet.

Neu!!: 3-Sphäre und Vektorfeld · Mehr sehen »

Verschlingung

Borromäischen Ringe sind eine Verschlingung von drei Komponenten. Eine Verschlingung eines Kreises mit einer Kleeblattschlinge. In der Knotentheorie, einem Teilgebiet der Mathematik, ist eine Verschlingung (auch Link oder Verkettung) eine Menge von Knoten, die sich nicht schneiden, die aber ineinander verschlungen sein können.

Neu!!: 3-Sphäre und Verschlingung · Mehr sehen »

William Thurston

Oberwolfach William Paul Thurston (* 30. Oktober 1946 in Washington, D.C.; † 21. August 2012 in Rochester, New York) – allgemein als Bill Thurston bekannt – war ein US-amerikanischer Mathematiker.

Neu!!: 3-Sphäre und William Thurston · Mehr sehen »

Zusammenhängender Raum

Zusammenhängende und nicht zusammenhängende Unterräume von ''R²'': ''A'' ist einfach zusammenhängend, ''B'' (das gesamte Blaue) sowie die Komplemente von ''A'' und ''B'' sind es nicht. In der mathematischen Topologie gibt es verschiedene Begriffe, die die Art und Weise des Zusammenhangs eines topologischen Raumes beschreiben.

Neu!!: 3-Sphäre und Zusammenhängender Raum · Mehr sehen »

Leitet hier um:

3-dimensionale Sphäre.

AusgehendeEingehende
Hallo! Wir sind auf Facebook! »